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Recent theories for supersonic jet noise have used an instability wave noise generation
model to predict radiated noise. This model requires a known mean flow that has typically
been described by simple analytic functions for single jet mean flows. The mean flow of
supersonic coaxial jets is not described easily in terms of analytic functions. To provide
these profiles at all axial locations, a numerical scheme is developed to calculate the mean
flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary
layer equations are solved using a mixing length turbulence model. Empirical correlations
are developed to account for the effects of velocity and temperature ratios and Mach
number on the shear layer spreading. Both normal velocity profile and inverted velocity
profile coaxial jets are considered. The mixing length model is modified in each case to
obtain reasonable results when the two stream jet merges into a single fully developed jet.
The mean flow calculations show both good qualitative and quantitative agreement with
measurements in single and coaxial jet flows.
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1. INTRODUCTION

The current interest in the development of a High Speed Civil Transport that is
economically viable and environmentally compatible has renewed research efforts on
supersonic jet mixing and noise reduction. Supersonic jets are intense noise generators, and
methods must be found to modify the noise generation process to reduce radiated noise
levels if a future high speed civilian aircraft is to meet community noise regulations. In
a recent review, Seiner and Krejsa [1] discuss the challenge of reducing supersonic jet noise
associated with both mixing and shocks while maintaining acceptable propulsion system
performance. The goal is to maintain the total thrust and mass flow of the propulsion
system at the highest levels while reducing the strength of the noise sources.

One method to modify the noise generated by a supersonic jet is to replace the single
stream jet with a dual stream, coaxial jet. Each stream may have a different initial velocity
and possibly different initial temperatures. For classification purposes, when the coaxial
jet flow has a higher inner stream velocity than an outer stream velocity, it is referred to
as a normal velocity profile (NVP) jet, as illustrated in Figure 1(a). If the outer stream
velocity is higher than the inner stream velocity, the jet has an inverted velocity profile
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(IVP); see Figure 1(b). The temperature of the streams is arbitrary but, for practical
propulsion systems, the higher velocity stream typically has the higher temperature.

The analysis to predict the noise generated from supersonic, perfectly expanded jets is
based on a theory that instability waves or large scale coherent structures control the
development of free jet shear flows. When the instability wave phase velocities exceed the
ambient speed of sound, these waves are the dominant source of mixing noise radiated
into the downstream arc of the jet. Even when shocks are present in the jet flow, the noise
from the jet that radiates into the downstream arc is due primarily to turbulent mixing,
whereas the broadband shock associated noise dominates in the upstream arc. Extensive
measurements have shown this for single jets [2] and for coaxial jets [3]. The assumption
that the jet is perfectly expanded simplifies the analysis and allows us to concentrate on
profile shaping as a means to further reduce the mixing noise.

To complete the analysis in the instability wave noise generation model, the equations
of motion are decomposed with the assumption that the flow variables are a combination
of a mean flow component and a fluctuating component representing the large scale
coherent structures. This results in equations that describe the instability waves or large
scale structures that are superposed on a known mean flow field. Thus, the mean flow is
an input to the instability wave problem and must be determined separately. A complete
solution to the instability noise generation model requires that the developing mean flow
properties be known at every axial location. In the present paper, we describe an analysis
to determine the developing mean flow properties of a compressible coaxial jet. Due to
the complex nature of developing NVP and IVP jets with various velocity and temperature
conditions, the mean flow has been determined numerically. In related papers, we will

Figure 1. Illustrations of coaxial jet flows: (a) normal velocity profile coaxial jet; (b) inverted velocity profile
coaxial jet.
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describe the evolution of the instability waves or large scale structures and the noise that
they generate and radiate [4, 5].

For the most part, in the past, in calculations of instability waves in a single
axisymmetric jet, analytic functions have been used to characterize the mean flow. These
analytic functions have been based on results from experimental measurements where data
have been correlated by local similarity variables. Examples of this approach include the
measurements of: Lau et al. [6], whose data were fitted by an error function profile; Cohen
and Wygnanski [7], who fitted data with a series of hyperbolic tangent functions, to add
corrections to the classical hyperbolic tangent profile; and Morrison and McLaughlin [8],
who fitted data by a half-Gaussian profile. Michalke [9] has summarized the use of different
analytic functions in the calculation of instability waves. The measured data typically
include only velocity profiles, which are sufficient for incompressible instability wave
calculations. When compressibility or mean density effects are important, the instability
wave calculations require that either the temperature or the density profile be specified.
Often, the approximations have been made that allow the Crocco–Busemann relation to
be used. This describes the temperature or density profile as a function of the velocity alone
[9–11]. Using the methods to be described in this paper, Dahl [12] calculated velocity and
density profiles for both subsonic and supersonic jets and compared the results to
hyperbolic tangent velocity profiles and the corresponding density profiles from the
Crocco-Busemann relation. Good agreement was found for both isothermal and hot jets
showing the usefulness of the Crocco–Busemann relation in single jet instability wave
calculations. With the mean profile information defined analytically, the mean profile
variables and all their derivatives are available at all points in the radial direction for the
numerical calculation of instability wave characteristics. Furthermore, these analytic
functions may be continued into the complex plane. This allows for the calculation of
damped inviscid waves [13]. Thus, the ability to use analytic functions to describe the mean
flow simplifies the study of single jet instability waves.

In the case of a coaxial jet, it is not clear how to develop analytic functions to describe
the profiles at all axial locations. Tam and Burton [14], in a single supersonic jet case, used
a generalized half-Gaussian function to describe the mean velocity at all axial locations.
The scaling parameters, the centerline velocity, the core radius, and the half-width of the
mixing region, were defined by cubic spline fits to measured data. The density profile was
found by keeping the total temperature constant. This approach was possible due to the
availability of measured data; however, there is little measured data for coaxial jets,
especially with supersonic conditions, that would allow an analytical description to be
made at all axial locations, including the merging region of a normal profile and an
inverted profile into a single jet. Furthermore, whereas temperature profiles have been
measured in a subsonic jet, they are not typically measured in a supersonic jet. Therefore,
even though velocity measurements may be available for coaxial jets with supersonic
conditions, it is doubtful that the Crocco–Busemann relationship could provide the
appropriate temperature profiles for either normal or inverted conditions. Thus, in the
present paper the mean profiles for coaxial jets are determined numerically. Morris [15, 16]
has calculated instability waves using numerically generated velocity profiles for a single
incompressible jet. The significant extension here is the inclusion of compressibility effects
and the consideration of both normal and inverted velocity profile coaxial jets.

Techniques to calculate the mean flow properties of coaxial jets numerically have ranged
from the use of Reichardt’s theory for free turbulence mixing [17–19] to the use of full
Navier–Stokes solvers [20]. Early studies primarily modelled subsonic jets and used simple
formulations in the turbulence models for the empirically derived constants. More recent
studies have used two equation k–o turbulence models. In all cases, the calculated velocity
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profiles resembled measured data with varying degrees of accuracy. However, many of
these numerical techniques lack an ease and robustness that is necessary to predict the
development of a variety of NVP and IVP jets with a wide variety of operating conditions.
To obtain these qualities, a numerical technique based on the approach of Patankar and
Spalding [21] has been used. In their work, the development of a turbulent, axisymmetric
free jet is assumed to be governed by the Reynolds-averaged, compressible, parabolic
boundary layer equations. A turbulence model is required to complete the set of equations.
In the next section, we describe the governing boundary layer equations and discuss the
basic turbulence model for a single compressible shear layer with different velocity and
density ratios. The modifications to the turbulence model are then described for the
merging flow in NVP and IVP jets. Next, the numerical formulation is presented. Finally,
numerical predictions are made for both single and coaxial jets that compare calculated
profiles to measured data and other calculated results for the same jet operating conditions.
It should be noted that the goal of this part of the work is the calculation of the mean
flow properties of a coaxial jet, either with a normal initial velocity profile or with an
inverted initial velocity profile, that expands and merges in a smooth and physically
reasonable fashion in the downstream direction. It should be recalled that the resulting
predictions of the mean flow development form the basis for an instability wave model
of the large scale coherent structures and their noise radiation. Therefore, the absolute
accuracy of the calculated mean flows compared to any particular set of measured data
is secondary to whether or not the calculated results bear a strong qualitative resemblance
to the behavior of coaxial jet flows. However, it will be shown that the predictions,
when compared to available measurements, actually show reasonable quantitative
agreement.

2. MEAN FLOW DEVELOPMENT

2.1.    fl

The compressible flow of a free jet is governed by the continuity, momentum, energy
and state equations. Following the discussion in Anderson et al. [22], we assume that the
mean flow development of an axisymmetric free jet is governed by the Reynolds-averaged
boundary layer equations for compressible flow; since the flow is also assumed to be
turbulent. The flow variables are decomposed into a time averaged or mean value part and
a fluctuating or turbulent part (e.g., p= p̄+ p', where the overbar denotes the time
averaged part and the prime denotes the fluctuating part). With the jet static pressure
matched to the ambient pressure and the density–velocity and density–enthalpy
correlations neglected [23], the equations in axisymmetric co-ordinates reduce to the
following:

continuity,

1

1x
(rr̄ū)+

1

1r
(rp̄ṽ)=0, (1)

momentum,

r̄ū
1ū
1x

+ r̄ṽ
1ū
1r

=
1
r

1

1r$r0m 1ū
1r

− r̄u'v'1%, (2)
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energy,

r̄ū
1H�
1x

+ r̄ṽ
1H�
1r

=
1
r

1

1r$r6 m

Pr
1H�
1r

− r̄cpv'T'+ ū$01−
1
Pr1m 1ū

1r
− r̄u'v'%7%, (3)

where ṽ is a mass averaged quantity, defined as

ṽ=(1/r̄)(r̄v̄+ r'v'). (4)

These equations have been non-dimensionalized by the following reference values: spatial
co-ordinates by R1, velocity by U1, density by r1, pressure by r1U2

1 , enthalpy and cpT by
U2

1 , and viscosity by R1r1U1. The subscript 1 is used to indicate jet exit conditions for a
single jet or for the inner stream of a coaxial jet.

We assume a perfect gas. Thus, the equation of state is

p̄= r̄RgT� , (5)

where Rg is the gas constant. Also, the laminar viscosity is related to the mean temperature
according to Sutherland’s Law:

m= m0 0T�
T01

3/2 T0 +S0

T� +S0
. (6)

S0 is 110·3 and m0 is the viscosity at the reference temperature T0 of 273 K.

2.2.  

In equations (2) and (3), the Reynolds stress term −r̄u'v' and the Reynolds heat flux
term −r̄cpv'T' are undefined. These terms must be modelled in order to solve the system
of equations. In anticipation of the difficulties in the definition of a turbulence model that
would work for a supersonic coaxial jet with both normal or inverted initial velocity
profiles and streams of different temperature (an example of the difficulties in turbulence
modelling for single stream supersonic jets is found in Dash [24]) it was decided to use
the most basic model; namely, the mixing length model for the turbulence closure. Any
turbulence model chosen for these calculations would require modification and calibration
to obtain reasonable results for both normal and inverted profile coaxial jets. The mixing
length model represents the turbulent stress from which an effective viscosity is defined.
Through the use of a turbulent Prandtl number to relate eddy diffusivities for heat and
momentum, an effective Prandtl number may be calculated from the effective viscosity.

In the mixing length model, the Reynolds stress term is written as [10, 22]

−r̄u'v'= mT
1ū
1r

(7)

and the heat flux term as

−r̄cpv'T'=
cpmT

PrT

1T�
1r

. (8)

The turbulent Prandtl number PrT has essentially a constant value for free jet calculations
[10, 22, 25, 26]. The mixing length model is embodied in the turbulent viscosity,

mT = r̄(C1C2l)2=1ū/1r =, (9)

where l is a characteristic length scale, and C1 and C2 are mixing length constants; however,
for this model, they are taken to be functions of the flow conditions.
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It is known that the growth of a shear layer depends on the flow conditions at the shear
layer edges with the velocities and densities of the two streams being of primary interest
[10, 25, 27, 28]. This dependence occurs whether the flow is compressible or incompressible.
In an attempt to separate out purely compressible effects, Papamoschou and Roshko [28]
and others have normalized the compressible shear layer growth rate by an incompressible
growth rate value at the same edge conditions. This followed the earlier work of Brown
and Roshko [27], that showed the effects of different velocity and density edge conditions
on shear layer growth for incompressible flows. Thus, in order to incorporate these effects
into the mixing length model, to obtain the proper shear layer growth, two factors have
been developed that depend on the flow conditions; one for incompressible conditions and
the other for compressibility effects.

The factor C1 is the incompressible part of the mixing length constant. It depends on
the velocity ratio U2/U1 and the density ratio r2/r1 between the two streams on either side
of the shear layer, where U1 and r1 are the mean velocity and density of the inner stream
and U2 and r2 are the mean velocity and density of the outer stream. Correlations for the
expected vorticity thickness growth rate have been developed by many investigators from
experimental evidence. Thus, given that we know the vorticity thickness growth rate for
a fixed velocity ratio and a fixed density ratio, we have adjusted C1 (C2 =1) until the
calculated initial vorticity thickness growth rate of a single jet agrees with the correlated
value. Continuing this process for a range of velocity and density ratio values results in
a series of calibration curves for C1.

C2 is the compressible part of the mixing length definition. Its purpose is to decrease
the growth of the shear layer as compressibility effects become important. It depends on
a Mach number in a relative frame of reference convecting with the real phase speed of
a growing disturbance in the shear layer. This convective Mach number depends on the
velocity ratio, on the density ratio, and on the Mach number of one of the streams. The
convective Mach number has been used to correlate normalized measured growth rates
of compressible shear layers. We have developed an equation that fits this data in order
to predict shear layer growth rates for given flow conditions. Thus, we have proceeded to
determine C2 given that C1 is allowed to take on its previously calibrated value for the given
velocity and density ratios. C2 is adjusted until the calculated initial vorticity thickness
growth rate agrees with the predicted value. For this case, a single calibration curve has
been generated. Further details on the evaluation of C1 and C2 are given in Appendix A.

There are several choices that may be made for the characteristic length scale for a jet
shear layer. Since the flow is turbulent and the motion is dominated by large structures
or instability waves, an appropriate characteristic length scale would be [27, 29]

l=Dū/=1ū/1r =max, (10)

where Dū is the velocity difference across the shear layer. Defined in this way, l can be
interpreted as a vorticity thickness. If necessary, it can be related to other length scales
if an appropriate functional shape for the velocity profile is chosen. For example,
l=0·978lw where lw is defined as the shear layer width from the location at which
(ū− ū2)/Dū=0·9 to the location at which (ū− ū2)/Dū=0·1; ū is described by an error
function, and ū2 is the normalized outer stream velocity.

2.3.     

Initially, a coaxial jet, either with an initial normal velocity profile or an inverted velocity
profile, has two distinct shear layers with uniform flow conditions at both edges of both
shear layers. As a result, the mixing length model, equation (9), gives separate constant
values C1, C2, and l for each layer. The values of C1 and C2 depend on the velocity ratio,
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Figure 2. Definitions of the merging normal velocity profile mixing length model factors: (a) initial merging
profile; (b) advanced merging profile; (c) fully merged profile.

the density ratio and the convective Mach number determined from the separate edge
conditions. The characteristic length l is determined for each shear layer from equation
(10). The turbulent viscosity mT is then calculated across the coaxial jet using local values
of r̄ and =1ū/1r =. The separate shear layers have different constants (C1, C2, l) so that, at
some point between the two shear layers, the mT profile must switch from one set of
constants to the other. As a result, an abrupt change in the mT profile occurs that is not
desirable numerically. Initially, =1ū/1r = is near zero between the two shear layers and the
effect of the abrupt change is negligible. As the calculations progress downstream, =1ū/1r =
between the two shear layers increases and the jump in mT is appreciable. To overcome
this problem, a hyperbolic tangent function is used to transpose from one set of constants
to the other. This works until the outer jet core is about to disappear and the shear layers
are about to merge. At that point, the mixing length model must be altered and the normal
and the inverted velocity profile cases are treated separately.

2.3.1. Normal velocity profile mixing length model
The normal velocity profile mixing length model has been developed by observations

of the behavior of the ū and 1ū/1r profiles as the shear layers merge and by a comparison
of calculations to measured data taken from Lau [30]. The merging shear layer profile
contains a local minimum in =1ū/1r = that disappears as the shear layer merges fully into
a single jet; see Figure 2. This local minimum is used as a point to separate the two merging
shear layers. A single characteristic length for the merging shear layers is defined as

l=Dūmax/=1ū/1r =max, (11)

where Dūmax is the larger Dū between the two values determined by using the separation
point. The values of C1 and C2 are also determined from the edge conditions that give
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Dūmax . The maximum gradient =1ū/1r =max is the largest value of =1ū/1r = that occurs in the
merging profile. This method for the determination of C1, C2 and l for a merging normal
profile has the advantage that, as the flow transposes into a single jet profile, the C1, C2,
and l values transition into the appropriate form for a single jet.

2.3.2. Inverted velocity profile mixing length model
When an inverted profile starts to merge, a local maximum occurs in the velocity profile

yielding 1ū/1r=0; see Figure 3(a). This point is used to identify the separation point
between the two shear layers. As long as the inner core exists, the two merging shear layers
are treated separately but their constants are added as follows:

(C1C2l)total =(C1C2l)inner +(C1C2l)outer. (12)

This increases mT across the profile to mimic the increased turbulent action as the inverted
profile starts to merge. When the inner core ends, equation (12) is no longer used and it
is assumed that the mixing process in the outer shear layer dominates the flow, so that,
(C1C2l)total =(C1C2l)outer; see Figure 3(b). As with the normal profile, this later usage of C1,
C2, and l transitions into the proper usage for a single jet downstream. It should be noted
that the mixing length model gives mT =0 at the local maximum, which is unrealistic. The
simple solution taken here is to smooth the =1ū/1r = profile, and hence smooth mT [12].

Figure 3. Definitions of the merging inverted velocity profile mixing length model factors: (a) initial merging
profile; (b) advanced merging profile, no inner stream potential core; (c) fully merged profile.
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2.4.  

Many numerical techniques are available for the solution of the boundary layer
equations. Any of these could have provided adequate mean flow results; but our criterion
for mean flow calculations dictated that the mean flow results be sufficiently resolved in
order to be used for instability wave calculations. Furthermore, we wished to avoid any
numerical calculation of ṽ. Hence, initially, we followed the stream function approach used
by Patankar and Spalding [21] and Crawford and Kays [26].

The equations of motion are transformed to stream function co-ordinates using

rr̄ū= 1C/1r , rr̄v̄=−1C/1x . (13)

These equations ensure that the continuity equation (1) is satisfied. After substitution of
equations (7) and (8) into equations (2) and (3) and with the use of the definition for total
enthalpy H� = cpT� + ū2/2, followed by a transformation from (x, r) co-ordinates to (x, C)
co-ordinates, we obtain for momentum and energy:

1ū
1x

=
1

1C $r2r̄ūmeff
1ū
1C%, (14)

1H�
1x

=
1

1C $r2r̄ū
meff

Preff

1H�
1C%+

1

1C$r2r̄ū20meff −
meff

Preff1 1ū
1C%, (15)

where

meff = m+ mT, Preff =
1+ mT/m

1/Pr+ mT/PrTm
(16, 17)

These equations can be differenced in a variety of ways: explicitly [31], implicitly on an
evenly spaced C-grid [32], or transformed to a normalized C-grid and implicitly
differenced as in Patankar and Spalding [21]. Each of these numerical methods have been
found to have problems. The explicit DuFort–Frankel method [31] has stability problems;
the implicit Crank–Nicolson method using an evenly spaced C-grid [32] does not provide
sufficient resolution at the outer, low speed edges of the jet; and Patankar and Spalding’s
method [21] has difficulties with entrainment boundary conditions at the outer edge. Each
of these problems have been overcome by using fully implicit differencing and what is
considered to be a natural grid stretching and a natural outer boundary entrainment. By
choosing a fully implicit method, the numerical problem is inherently stable. The problem
of grid resolution is overcome by the use of an evenly spaced r-grid. The outer boundary
condition is discussed later.

The choice of an evenly spaced r-grid results in an unevenly spaced C-grid. In essence,
the C-grid is stretched, but in a manner that is natural to the C-grid, with more grid points
at the outer edge where a finer grid spacing is desired. From equation (13),

dC= rr̄ū dr. (18)

Integration of equation (18) across one grid spacing we obtain

DCk =Ck −Ck−1 = 1
2[(rr̄ū)k +(rr̄ū)k−1]Dr (19)

after using the trapezoidal rule. One consequence of equation (19) is that ū cannot be zero
outside the jet or DC would go to zero. To get close to quiescent outer conditions, the
free stream velocity is set to 1% of the initial highest velocity.
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Figure 4. The stream function grid for mean flow calculations.

Writing equation (14) as

1ū
1x

=
1

1C $A 1ū
1C %, (20)

where

A= r2r̄ūmeff , (21)

we implicitly difference this momentum equation, using the grid shown in Figure 4, as
follows:

ūj+1,k − ūj,k

Dx
=6 2

DCk+1 +DCk $Ak+1/2
ūk+1 − ūk

DCk+1
−Ak−1/2

ūk − ūk−1

DCk %7j+1

. (22)

The coefficient A is the average of adjacent grid values

Ak+1/2 = 1
2(Ak +Ak+1). (23)

Collecting terms, equation (22) may be arranged into tridiagonal form

{−D−
k Ak−1/2ūk−1 + (1+D+

k Ak+1/2 +D−
k Ak−1/2)ūk −D+

k Ak+1/2ūk+1}j+1 = ūj,k , (24)

where

D−
k =

2Dx
(DCk+1 +DCk )DCk

, D+
k =

2Dx
(DCk+1 +DCk )DCk+1

. (25, 26)



    653

Equation (15) is differenced in the same manner. The resulting tridiagonal equation is

{−D−
k Dk−1/2ūk−1 −D−

k Bk−1/2H� k−1 + (D+
k Dk+1/2 +D−

k Dk−1/2)ūk +(1+D+
k Bk+1/2

+D−
k Bk−1/2)H� k −D+

k Dk+1/2ūk+1 −D+
k Bk+1/2H� k+1}j+1 =H� j,k, (27)

where

B= r2r̄ū
meff

Preff
, D= r2r̄ū20meff −

meff

Preff1. (28, 29)

2.4.1. Boundary conditions
Since the problem is axisymmetric, a symmetry boundary condition is enforced at r=0,

k=1; that is,

1ū/1C= 1H� /1C=0. (30)

The right side of equation (20) is differenced using half the grid spacing at the edge (see
Figure 4):

ūj+1,1 − ūj,1

Dx
=

1
DC2/2

=6$A 1ū
1C%j+1,1+1/2

−$A 1ū
1C%j+1,17. (31)

From the boundary condition (30), the (j+1, 1) term on the right side is zero. The final
tridiagonal form is

601+
2Dx
DC2

2
A1+1/21ū1 −

2Dx
DC2

2
A1+1/2ū27j+1

= ūj,1. (32)

Similarly, for the energy equation we obtain

62Dx
DC2

2
D1+1/2ū1 +01+

2Dx
DC2

2
B1+1/21H� 1 −

2Dx
DC2

2
D1+1/2ū2 −

2Dx
DC2

2
B1+1/2H̄27j+1

=H� j,1. (33)

The outer boundary condition is simply that the ū and H� values equal the free stream
conditions; that is,

ūj+1,N+1 = ūj,N+1 = ūa, H� j+1,N+1 =H� j,N+1 =H� a. (34)

This also may be viewed as saying that derivatives in the x-direction are zero at the outer
edge. The consequence of this type of boundary condition is that the flow, expanding
outward due to diffusion, must never reach the outer grid boundary or the calculations
will be in error. The method by which this difficulty is overcome is discussed in the next
section.

2.4.2. Numerical method of solution
Equations (24), (27), (32), (33) and (34), create a 2×2 block tridiagonal system for k=1

to N+1, where N is the number of grid spacings. The system can be solved by standard
block tridiagonal routines [22]. The coefficient matrices of the block tridiagonal system are
unknown at the j+1 location since they are functions of the unknowns, ūj+1,k and H� j+1,k .
Consequently, iterations must be made to complete the solution for each axial step. The
procedure is as follows.
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1. Guess ūj+1,k and H� j+1,k . If j=1, then use the initial conditions:

ū2,k = u� 1,k, H� 2,k =H� 1,k .

For jq 1, we can extrapolate from previous solutions:

ūj+1,k =2ūj,k − ūj−1,k , H� j+1,k =2H� j,k −H� j−1,k .

2. Solve for j+1 values of r̄, ueff and Preff .
3. Calculate DCj+1,k grid using equation (19).
4. Solve the block tridiagonal system for new values of ūj+1,k and H� j+1,k . Also, new

values of r̄, meff and Preff are calculated.
5. If the difference between the new solution and the previous solution is smaller than

some convergence criterion, then the axial step is completed. Otherwise, the iteration
process continues at step 3.

To ensure, as mentioned previously, that the outer boundary condition is not
compromised by the expanding flow, the grid must be large enough in the radial direction
to encompass the flow. Rather than making the grid so large that the flow is encompassed
at all axial locations, the outer edge of the initial grid is much closer to the outer edge
of the jet, typically the grid ends at twice the outer radius of the initial jet. As the flow
expands downstream, the outer edge of the jet flow is tracked until it is within some
arbitrary distance from the outer edge of the grid; at which time, more grid points are
added to the solution. All of the variables at the new grid points take on the free stream
values that are assumed to always exist outside the grid. As the shear layer of the jet
expands, it becomes possible to increase the Dr-grid spacing since less grid points are
necessary to define the shear layer. Thus, we do not simply continue to add grid points
as the flow expands but, from time to time, we reduce the number of grid points by
increasing the grid spacing. Actually, it is best to simply double the grid spacing so that
the extrapolated guesses for the new variables occur along constant grid lines in the
x-direction. Thus, no interpolation is necessary.

2.4.3. Numerical accuracy
The numerical scheme for the governing parabolic equations, equation (22) for example,

is first order accurate in both Dx and DC. The latter accuracy is due to the uneven spacing
in the C-grid. Since the mean flow results are used in the stability calculations, it is found
there that to obtain converged stability results a finely spaced r-grid is necessary for the
calculation of the derivatives of the mean flow variables. Using a fine r-grid results,
through equation (19), in a fine, but unevenly spaced C-grid. An example to illustrate the
convergence of the mean flow calculations using the mixing length turbulence model is
shown in Figure 5 for three different grid spacings. The calculated shear layer half-width
b and the vorticity thickness d are shown for the shear layer of a single jet under both
incompressible and compressible conditions. The half-width shows the ability of the code
to find the defined edges of the shear layer in order to calculate the half-width and vorticity
thickness shows its ability to calculate accurately the maximum derivative of the mean
velocity profile. For the range of grid spacings shown, the mean flow results are
independent of the grid spacing.

3. NUMERICAL PREDICTION

3.1.   

The numerical predictions are compared in Figure 6 to data taken form Zaman [33] for
a subsonic, M=0·5 axisymmetric jet. The axial variation of the centerline velocity is
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Figure 5. Results for the single jet spreading parameters vorticity thickness d and jet half-width b at three
different radial grid spacings: w, Dr=0·004, N=500; q, Dr=0·002, N=1000; r, Dr=0·001, N=2000. (a)
Incompressible single jet parameters; (b) compressible single jet parameters.

shown in Figure 6(a). The calculations show good agreement with the data and to an
equation for centerline velocity from Witze [34], based on a correlation of many different
jet measurements. In Figure 6(b) are shown the growth of the jet half-velocity width and
the ratio of the jet half-velocity width to momentum thickness. The calculations
underpredict the spread of the jet as defined by the half-velocity width.

Results for higher speed jets are shown in Figure 7. For the M=1·37 jet, the centerline
velocity data are taken from Lau et al. [6] (Figure 7(a)) and the half-velocity point data

Figure 6. A comparison of subsonic single jet calculations (M=0·5) to measured data [33]. (a) Centerline
velocity: ——, calculated; w, data; – – –, Witze [34] centerline; (b) jet half-velocity width/jet exit diameter, q
(left scale); jet half-velocity width/momentum thickness, r (right scale); ——, calculated. Operating conditions:
U1 =172·5 m/s, T1 =295·4 K, R1 =1·27 cm.
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Figure 7. A comparison of subsonic single jet calculations to measured data. (a) centerline velocity: (b) jet
half-velocity point. Operating conditions: M=2·22, U1 =538 m/s, T1 =147 K, R1 =1·28 cm; ——, calculated;
q, data [36]; M=1·37, U1 =472 m/s, T1 =295·4 K, R1 =2·55 cm; — — —, calculated; r, data [6, 35].

is from Lau [35] (Figure 7(b)). The calculated core region spreads at the measured rate,
although the measured core length is slightly shorter than predicted. For the M=2·22 jet,
the comparisons for both the centerline velocity and the jet half-velocity point are made
with data from Eggers [36]. Again, the calculations underpredict the measured spreading
of the jet. These results show the inaccuracies that exist in trying to model the effects of
compressibility in our mean flow calculations. The calculated spreading rate of a
compressible jet is determined by the compressible calibration equation (A3) given in
Appendix A. The measured spreading rate data are scattered around this correlation and
the predictions reflect these discrepancies. Any measured jet spreading rate data that are
larger than that predicted by the calibration equation will have calculated spreading rates
that are less than the measured spreading rates. This is reflected in the comparison between
the calculated jet half-velocity point and the data measured by Eggers. Since the
experimental jet spreading rate is higher than that predicted by the calibration equation,
the measured jet half-velocity point moves outward faster downstream than predicted
(Figure 7(b)). Experimental jets that have spreading rates much closer to the calibration
curve (e.g., the measured Lau data) have better agreement between the calculated and the
measured jet half-velocity points. As with many other attempts at turbulence modelling,
the results are only as good as the calibration and it is difficult to apply the same model
to experiments for a wide range of operating conditions in many different facilities. Also,
the turbulence model is calibrated to match growth rates in the initial core region of a jet,
the region of most importance to growing instabilities. In the downstream region, the jet
is a thick axisymmetric shear layer and the current turbulence model, based on thin shear
layer results, provides less representative growth rates.

A final comparison is made for a single jet in a moving stream. These results are
important to the subsequent consideration of coaxial jets on the effect of Mach number
and the effect of velocity ratio on jet spreading characteristics. The effect of the velocity
ratio on the centerline velocity is shown in Figure 8(a). The calculated results show that
the turbulence model gives a decrease in jet spreading and an increase in the potential core
length as the velocty ratio increases from 0·096 to 0·497. This agrees with the results
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measured by Morris [29] for the effects of velocity ratio on centerline velocity. The Mach
number effect at a velocity ratio of about 0·1 is shown in Figure 8(b). Again, the calculated
results behave in the same manner as the measured data as the Mach number increases
from 0·47 to 1·67. Hence, the turbulence model allows for the calculated jet behavior to
mimic the expected jet behavior for a compressible jet in a co-flowing stream.

3.2.   

With the single shear layer turbulence model tested on both subsonic and supersonic
jets with and without a co-flowing stream, we now add an outer jet flow to create a coaxial
jet with two shear layers. Both NVP and IVP jet examples are considered. A comparison
of calculated velocity profiles for a NVP jet to measured data [30] at four axial locations
is shown in Figure 9. Initially, the agreement is very good. The outer shear layer is
spreading faster than the inner shear layer, as expected from the results in Figure 8 for
a jet in a co-flowing stream. Downstream, the calculated jet centerline velocity begins to
decay sooner than the measured data. This again reflects the differences between the
correlation for the spreading rate and the measured values for this set of data. However,
in essence, the calculations produce a reasonable representation of the merging jet for an
initial normal velocity profile.

Next, the inverted velocity profile data from von Glahn et al. [37] are used for
comparison with calculations. Velocity profiles measured at five axial locations are shown
in Figure 10. The IVP predictions show similar velocity profiles as the two shear layers
spread and merge downstream. The other calculated results shown in the figure are from
Georgiadis and Yoder [20]. Their results are indicative of the problems encountered when
using Navier–Stokes solvers with k–e turbulence models. The initial profiles are not smooth
and the spreading of the shear layer downstream is greatly underpredicted.

A final comparison with IVP jet data is shown for both velocity and temperature profiles
in Figures 11 and 12: the data are from Tanna et al. [38]. In this case, the outer stream
is much thinner than in the previous example causing the two shear layers to mix sooner.

Figure 8. A comparison of single jet in moving stream calculations to measured data [29]. (a) Centerline
velocity variations with external flow: ——, calculated, M=0·47, U2/U1 =0·096; w, data; — — —, calculated,
M=0·47, U2/U1 =0·497; y, data. (b) Centerline velocity variations with Mach number: ——, calculated,
M=0·47, U2/U1 =0·096; w, data; — — —, calculated, M=1·67, U2/U1 =0·098; e, data. Operating conditions
R1 =2·54 cm; M=0·47, U1 =158 m/s, T1 =283 K; M=1·67, U1 =461 m/s, T1 =190 K.
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Figure 9. A comparison of normal velocity profile jet calculations to measured data [30]: ——, calculated; w,
data. Radial velocity profiles: (a) x=4; (b) x=8; (c) x=16; (d) x=32. (e) Centerline velocity. Operating
conditions: U1 =411 m/s, T1 =657 K, R1 =1·96 cm; U2 =274 m/s, T2 =292 K, R2 =3·91 cm.

Figure 10. A comparison of inverted velocity profile jet calculations to measured data [37]: ——, calculated;
w, data; — — —, calculated in reference [20]. Radial velocity profiles: (a) x=2; (b) x=4; (c) x=8; (d) x=16.
(e) x=26. Operating conditions: U1 =314 m/s, T1 =248 K, R1 =5·03 cm; U2 =459 m/s, T2 =1029 K,
R2 =8·80 cm.
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Figure 11. A comparison of inverted velocity profile jet calculations to measured data [38]: ——, calculated;
w, data. Radial velocity profiles: (a) x=0·38; (b) x=2·7; (c) x=3·8; (d) x=11·5; (e) x=23·0. Operating
conditions: U1 =273 m/s, T1 =434 K, R1 =2·61 cm; U2 =477 m/s, T2 =758 K, R2 =3·57 cm.

Figure 12. A comparison of inverted velocity profile jet temperature calculations to measured data [38]. See
Figure 11 for legend and operating conditions.
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Both good qualitative and quantitative agreement is seen for the velocity and temperature
profiles. Thus, the present calculations are capable of producing a reasonable merging jet
with an initial inverted velocity profile.

4. SUMMARY

Much of the thoretical work on the stability of free shear flows relies on the analytical
definition of the mean flow in order to solve for the stability characteristics. Experimental
measurements of shear flows have provided the basis for simple analytical forms to
describe the mean flow in the stability calculations. Such mean flow data are lacking for
two stream coaxial jets, especially at supersonic conditions. The data that are available
are not sufficient to develop analytical expressions for the mean flow properties of coaxial
jets that transition smoothly from two streams to one fully developed jet downstream for
both normal velocity profile and inverted velocity profile cases. A numerical scheme has
been developed to calculate the mean flow properties of a coaxial jet with two initial shear
layers. The development of a turbulent, axisymmetric free jet is assumed to be governed
by the Reynolds-averaged, compressible, parabolic boundary layer equations. To complete
this set of equations, a turbulence model is necessary. Any turbulence model chosen for
these calculations would have required modification and calibration to obtain reasonable
results for both normal and inverted profile coaxial jets. For expediency, a modified
and calibrated mixing length model has been used to represent the turbulent stresses
and obtain an effective viscosity. Mean flow properties have been predicted for coaxial
jets with either a normal initial velocity profile or an inverted initial velocity profile
that expand and merge in a manner representative of measured data. Both good qualitative
and quantitative agreement has been found for both velocity and temperature profiles.
These mean flow results can be used to calculate instability wave characteristics for coaxial
jets. These calculations are described in subsequent papers for both NVP [4] and IVP [5]
jets.
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APPENDIX A: CALIBRATION OF THE MIXING LENGTH MODEL

A.1.   C1

For given flow conditions, the mixing length model must provide the effective viscosity
that causes the jet shear layer to spread. C1 is the only factor available for adjustment in
order to obtain the proper spreading rate when the flow is incompressible. Many authors
have used experimental evidence and arguments about large scale structures dominating
the development of turbulent shear layers (some recent references are references [28] and
[39–43]) to develop a prediction for the incompressible vorticity thickness growth rate dv /x
as a function of the velocity ratio r and the density ratio s,

dv

x
=0·088

=1− r = (1+zs)

1+ rzs
, (A1)

where r=U2/U1 and s= r2/r1. The constant 0·088 used here is an average of the constants
from the above references when all are converted to a vorticity thickness growth rate, either
from information given in the reference or from the assumption of an error function shape
for the velocity profile. Although equation (A1) has been developed for a planar shear
layer, it is assumed to hold in the initial core region of a jet where there is a constant
velocity at both edges of the shear layer.

The calibration of C1 is carried out for a range of expected r and s values. Given r and
s, C1 is varied until the calculated vorticity thickness growth rate in the core region agrees
with that predicted by equation (A1). To ensure that mT dominates the effective viscosity
and that the flow is essentially incompressible, the calculations have been carried out on
a low speed, large diameter jet such that the Reynolds number was greater than 106 and
mT�m. The resulting family of curves is correlated to develop an equation for C1 for rQ 1
and an equation for rq 1. The curves take the form

C1(r, s)=
A(r)+B(r)zs+C(r)s

(1+zs)(1+ rzs)
, (A2)

where, for rQ 1,

A(r)= (6·5919+11·918r−4·1855r2)×10−2,

B(r)= (10·880−2·3578r+6·5642r2)×10−2,

C(r)= (3·1013+16·420r−5·8217r2)×10−2

and, for rq 1,

A(r)= (101·95+51·507r−1·6000r2)×10−3,

B(r)= (60·287+75·160r+1·3818r2)×10−3,

C(r)= (723·97+753·34r−6·2101r2)×10−4.

A.2.   C2

To develop the compressibility factor, experimental results for compressible shear layers
have been used to make a plot of normalized vorticity thickness growth rates versus
convective Mach number [12]. A simple curve fit to this data is given by

d'v (Mc )/d'vo =1+0·785[exp (−2M2
c )−1], (A3)
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where the convective Mach number is

Mc =M1

zs =1− r =

1+zs
, (A4)

d'vo is the incompressible spreading rate for the same r and s, and M1 is the Mach number
for the stream with velocity U1.

For given r, s and M1, C2 is adjusted, allowing C1 to take on its value defined by equation
(A2), until the calculated compressible vorticity thickness growth rate in the core region
agrees with the value predicted by equation (A3), when d'vo is given by equation (A1). The
results for C2 have been correlated with Mc to obtain the following equation:

C2(Mc )=1+0·4959[exp (−1·4593M2
c +0·0427M2

c −0·3658M4
c )−1]. (A5)


